Notice: Undefined offset: 2 in /home/content/n3pnexwpnas04_data03/80/41700480/html/wp-content/plugins/visitors-online/visitors-online.php on line 340

Notice: Undefined offset: 1 in /home/content/n3pnexwpnas04_data03/80/41700480/html/wp-content/plugins/visitors-online/visitors-online.php on line 340

Warning: Cannot modify header information - headers already sent by (output started at /home/content/n3pnexwpnas04_data03/80/41700480/html/wp-content/plugins/visitors-online/visitors-online.php:340) in /home/content/n3pnexwpnas04_data03/80/41700480/html/wp-content/plugins/visitors-online/visitors-online.php on line 392
Shanmugam IAS academy in coimbatore,tnpsc,coaching center,bank exam centres,UPSC
BRAIN

WAND – “PACEMAKER FOR THE BRAIN”

A new neurostimulator developed by engineers at UC Berkeley can listen to and stimulate electric current in the brain at the same time, potentially delivering fine-tuned treatments to patients with diseases like epilepsy and Parkinson’s.

The device, named the WAND, works like a “pacemaker for the brain,” monitoring the brain’s electrical activity and delivering electrical stimulation if it detects something amiss.

These devices can be extremely effective at preventing debilitating tremors or seizures in patients with a variety of neurological conditions. But the electrical signatures that precede a seizure or tremor can be extremely subtle, and the frequency and strength of electrical stimulation required to prevent them is equally touchy. It can take years of small adjustments by doctors before the devices provide optimal treatment.

WAND, which stands for wireless artifact-free neuro modulation device, is both wireless and autonomous, meaning that once it learns to recognize the signs of tremor or seizure, it can adjust the stimulation parameters on its own to prevent the unwanted movements. And because it is closed-loop — meaning it can stimulate and record simultaneously — it can adjust these parameters in real-time.

“The process of finding the right therapy for a patient is extremely costly and can take years. Significant reduction in both cost and duration can potentially lead to greatly improved outcomes and accessibility,” said Rikky Muller, an assistant professor of electrical engineering and computer sciences at Berkeley. “We want to enable the device to figure out what is the best way to stimulate for a given patient to give the best outcomes. And you can only do that by listening and recording the neural signatures.”

WAND can record electrical activity over 128 channels, or from 128 points in the brain, compared to eight channels in other closed-loop systems. To demonstrate the device, the team used WAND to recognize and delay specific arm movements in rhesus macaques.

To demonstrate the device, the team used WAND to recognise and delay specific arm movements in monkeys.

In experiments, the monkeys were taught to use a joystick to move a cursor to a specific location.

After a training period, the WAND device was capable of detecting the neural signatures that arose as the animals prepared to perform the motion, and then deliver electrical stimulation that delayed the motion.

“In the future we aim to incorporate learning into our closed-loop platform to build intelligent devices that can figure out how to best treat you, and remove the doctor from having to constantly intervene in this process,” Muller said.

Leave a Comment

Your email address will not be published.